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1. INTRODUCTION

Set theoretic topology is that part of topology that uses results and techniques
from set theory in order to solve its problems. In this field set theory and
topology walk hand in hand. Set theoretic topology has been quite vital for the
last 20 years and has solved major problems. Mathematicians involved in this
area are primarily set theorists who enjoy doing ‘applied’ set theory and gen-
eral topologists who solve their problems by working in the well-known models
of set theory where axioms such as V=L, MA +not —CH, CH or ¢ hold.
Right now there is a growing number of general topologists however that try
to construct their own models instead of making the set theorists prove the
consistency results they need. The beautiful book Set Theory: An Introduction
to Independence Proofs by KUNEN [7] is an important tool now for set theoretic
topologists.

What are the problems considered in set theoretic topology? This question
is unfortunately undecidable: one never knows whether one will run into a set
theoretical problem and many famous mathematicians working in various parts
of mathematics posed problems that looked sensible in their field but turned
out to be set theoretical ones. We shall present several well-known examples
of such problems.

Who is safe from set theory? Well, WHITEHEAD, ALEXANDROFF, WILDER and
CHOQUET were not. Maybe you are. But then be wise, never pose a mathemati-
cal problem. Set theory is watching you and is ready to attack.

The reader of these notes should be aware of the fact that I am not an

1. These notes form a write-up of a lecture given at the Topologiedag CWI, Amsterdam, Sep-
tember 28, 1984.
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expert in set theory. I am merely an interested amateur who is fascinated by
some of the results in set theoretic topology. The problems I discuss are mostly
well-known and only on one occasion do I take the liberty of discussing a
problem I helped to solve.

2. ALEXANDROFF’S PROBLEM

Most people are only interested in metrizable spaces. However, there are also
mathematically important spaces that are not always metrizable, for example
manifolds, CW-complexes, and topological vector spaces. A manifold is a
locally Euclidean Hausdorff space. Manifolds are certainly mathematically
important and the manifolds (with or without differential or algebraic struc-
ture) being mostly studied in topology are metrizable. Let M be a manifold
(not necessarily assumed to be metrizable). If A CM is closed then one cer-
tainly wants to be able to extend every continuous function f:4 —>R (the reals)
to a continuous function f:M—R. By the Tietze-Urysohn Theorem, see [5,
2.1.8] for details, this property of M is equivalent to the following one: every
two disjoint closed subsets of M can be separated by disjoint open sets. Gen-
eral topologists say that M is a normal topological space. In the process of con-
structing new continuous functions from old ones it is also extremely pleasant
if M has the following property: for every closed subset 4 of M there is a

sequence {U,:n€N} of open subsets of M such that 4= ﬂ U,. General

n=1
topologists say that a space with this property is perfect. A space which is
both perfect and normal is called perfectly normal. If X is a perfectly normal
space then X has the following important property: for every closed subset A4
of X there is a continuous function f:X—R with f !(0)=A. Clearly, every
metric space is perfectly normal. If one wants to generalize some of the exist-
ing theory on metrizable manifolds to nonmetrizable ones, it becomes clear
quite quickly that in many instances it is inevitable to restrict oneself to per-
fectly normal manifolds. The question then naturally arises whether there is a
perfectly normal manifold which is not metrizable, i.e. whether the extension
of the theory is worth while. This question was asked by ALEXANDROFF [1] and
later also by WILDER [18].

As usual, ¢ denotes the cardinal number of the reals. The Continuum
Hypothesis (abbreviated CH) is the statement that if X is any subset of R then
either X is countable or the cardinality of X is c.

It is well-known that GODEL [6] proved that CH is consistent with the usual
axioms of set theory. In addition, COHEN [2] showed that not —CH is con-
sistent too. Consequently, the Continuum Hypothesis is undecidable.

It seems unlikely that CH has anything to do with manifolds, let alone with
Alexandroff’s problem. In [13] however, RUDIN and ZENOR, assuming CH,
constructed an example of a perfectly normal nonmetrizable manifold. Later,
KozrLowskl and ZENOR [9] even constructed such a manifold that is analytic.
These contributions to the solution of Alexandroff’s problem very strongly sug-
gested a positive answer.

Let X be a compact Hausdorff space. We say that X satisfies the countable
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chain condition (abbreviated ccc) if every pairwise disjoint family of open sets
in X is at most countable. Martin’s Axiom (abbreviated MA) states that no
compact Hausdorfl ccc space is the union of fewer than ¢ nowhere dense sets.
So if one assumes CH then ‘fewer than ¢ means countable and hence M4 is
true by the classical Baire Category Theorem. In [16], SOLOVAY and TENNEN-
BAUM proved that the statement M4 + not - CH is consistent with the usual
axioms of set theory, thereby showing that M4 is strictly weaker than CH.

It seems extremely unlikely that an ‘exotic’ axiom such as MA + not - CH
has anything to do with Alexandroff’s problem. However, in [12] RUDIN
showed that under MA + not - CH all perfectly normal manifolds are metriz-
able.

Consequently, Alexandroff’s problem is undecidable.

3. WHITEHEAD’S PROBLEM

Let all groups be abelian and let 1y denote the identity function on a set X. If
A and B are groups then a surjective homomorphism f :4—B is said to split if
there is a homomorphism g:B—A with fog=15. A group G is a Whitehead
group if for every group B, every surjective homomorphism f:B—G with ker-
nel isomorphic to Z (the integers) splits. It is clear that all free groups are
whitehead and WHITEHEAD asked whether all Whitehead groups are free.
STEIN [17] showed that all countable Whitehead groups are free.

GODEL defined a subclass L of the class V of all sets, the so-called constructi-
ble sets. The statement V=L means that all sets are constructible: it was pro-
ven to be consistent in [6].

SHELAH [14], [15] showed that Whitehead’s problem is undecidable by show-
ing that under V=L all Whitechead groups are free while under
MA +not — CH there exists a Whitehead group G which is not free. In fact, the
group G can be constructed in ZFC alone, that is, its construction ‘only’ needs
the usual axioms of set theory plus the Axiom of Choice. So if one is a friend
of the Axiom of Choice, the group G ‘really’ exists and has the amazing pro-
perty that it is free under ¥'=L but not so under M4 +not —CH. For details,
see also [4].

The reader should have noticed by now that without a warning we switched
from topology to algebra. However, an application of Pontrjagin duality allows
one to translate Whitehead’s problem into topological language as follows: is
every compact arcwise-connected abelian topological group isomorphic to a product
of circles? Since I am a friend of the Axiom of Choice !, Shelah’s results
imply that for me there ‘really’ exists a compact arcwise-connected abelian
topological group which is nothing but a product of circles under V=L but
not under MA +not —CH. This is truly unbelievable.

The fact that Whitehead’s problem can be formulated both into algebraic

1. If you want to support the work of the society ‘Friends of the Axiom of Choice’ (president:

Dr. H.M. Mulder) please send a cheque to J. van Mill, Department of Mathematics, Free Univer-
sity, De Boelelaan 1081, Amsterdam, The Netherlands.
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and topological language is not an exception for a problem that turns out to
be dependent upon one’s set theory. These problems can often successfully be
translated into many mathematical languages and can therefore be attacked
from several directions.

4. CHOQUET’S PROBLEM
Our last problem is not as important as the other two. However, since I took
part in the solution of the problem myself, I take the liberty to mention this
one too.

A Boolean algebra (abbreviated BA) will be identified with its universe. A
BA B is called

complete/ countably complete/weakly countably complete
if for any two subsets P and Q of B such that pAg=0 for peP,geQ
without further condition/with P or Q countable/ with P and Q countable

there is an s€B which separates P and Q, i.e. p=<s for peP and g=<s' for
qeQ.

CHOQUET asked whether every weakly countably complete BA is a
homomorphic image of a complete BA. LOUVEAU [10] proved that under CH
the answer to Choquet’s problem is in the affirmative for BA’s of cardinality at
most ¢. The problem was shown to be undecidable by vAN DOUWEN and VAN
MIiLL [3] who constructed under MA +¢ = x*, with k any regular uncountable
cardinal, an example of a weakly countably complete BA which is not a
homomorphic image of any countably complete BA.

Again, Choquet’s problem can be translated into purely topological language
(by Stone duality) and in fact vAN DOUWEN and myself, being topologists,
thought about it as a topological problem.

There are numerous other problems in topology that turned out to be set
theoretical, for example, Souslin’s problem, the normal Moore space conjec-
ture, SN-type problems, the S-space problem, covering-type problems, etc. For
more information, see Rudin’s monograph [4] and the recently published
Handbook of Set Theoretic Topology (edited by K. KuNeN and JE.
VAUGHAN), [8]. Many papers on set theoretic topology appear in the journal
Topology and its Applications, which I recommend.
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